───────────────────────────────────────────────────────────── Kary Nota ────── ┌────────────────────────────────────────────────────────────┐ │ │ │ 1 │ │ ─── │ │ 2 2 ⎜ -e ⎟ │ │ In[1]: ───── + ────────────────────────────── + ⎜ ──── ⎟ │ │ 3 _______________________ ⎣ 4 ⎦ │ │ ╱ ┌ π ┐ 2 1 │ │ ╱ Sin │ ─── │ + ───── │ │ ╱ └ 2 ┘ 5 │ │ ╲╱ -2 │ │ │ │ Out[1]: 1.1986686986697146 │ │ │ ├─────────────────────────────────────────────────────────┬──┘ Nota is a nice terminal calculator with rich notation │ rendering. It is designed for your quick calculations │ and therefore provides you with a tiny and beautiful │ language so you can express your ideas easily. Keep in │ mind that Nota is all about beauty and ASCII art. └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘ ┌────────────────────────────────────────────────────────┐ │ │ │ In[2]: ⟨Earth's Radius⟩ ≡ 6371 │ │ │ │ Out[2]: 6371.0 │ │ │ │ │ │ 4 3 │ │ In[3]: ⟨Earth's Volume⟩ ≡ ─── × π × Earth's Radius │ │ 3 │ │ │ │ Out[3]: 1.0832069168457535e12 │ │ │ └──────────────┬─────────────────────────────────────────┤ Nota's Language offers beautiful ideas │ in its design; such as having variables │ that accept spaces and apostrophe └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘ ┌──────────────────────────────────────────────────────────────────┐ │ Nota is currently supported on the UNIX systems. It works great │ │ under the macOS and Linux systems. It can also be installed │ │ within the Windows machines but you have to do it manually. For │ │ information on the windows check this page. For UNIX systems, │ │ use one of the following automatic installation scripts: │ └──┬────────────────────────────────────────────────┬──────────────┘─ ─ ┐ │ curl -sSL https://kary.us/nota/install.sh | sh │ Installation ├────────────────────────────────────────────────┼ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘ │ wget -qO- https://kary.us/nota/install.sh | sh │ └────────────────────────────────────────────────┘ ┌──────────────────┐ │ Language Grammar │ └────┬─────────────┘ │ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼───────────────────────────────────────────────────┐ Grammar Component │ Description │ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼───────────────────────────────────────────────────┤ Normal Numbers │ Numbers in Nota can be in the normal form. │ │ Integer form like 0 or 42480. And in the decimal │ │ form like 1.8402 or 0.5 but remember decimal only │ │ numbers cannot be without zero: so 0.5 is │ │ possible but .5 is not. │ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼───────────────────────────────────────────────────┤ Hex Number │ Hexadecimal Numbers are supported and must be │ │ started with the 0x sign. So 0xfff is a number as │ │ well as 0x123. │ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼───────────────────────────────────────────────────┤ Names │ Nota approaches identifiers much differently than │ │ any other language. In Nota identifiers can have │ │ space within them, so no more camelCase, │ │ PascalCase, --kebab-case, what_ever; You can │ │ simply write things like size of the planet and │ │ it works. │ │ │ │ Also to make it more interesting, Nota even gives │ │ you ' (apostrophe) and therefore you can have │ │ things like radius of earth or earth's radius. │ │ │ │ Numbers are also allowed (but not for the first │ │ letter). You can have names like: X5 or X 5 and │ │ etc. │ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼───────────────────────────────────────────────────┤ Binary Operator │ Binary operators in Nota are: +, -, *, /, ^, %, │ │ ?, and !. They are fully explained in the Binary │ │ Operators section of the Language Reference. │ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼───────────────────────────────────────────────────┤ Negation │ The only unary operator that Nota defines is the │ │ value negation - operator. E.g: -13 + -sin[x]. │ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼───────────────────────────────────────────────────┤ Parentheses │ Nota provides the parenthesis notation to reorder │ │ precedence like: (1 + 2) * 3. │ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼───────────────────────────────────────────────────┤ Parentheses │ Functions in Nota are written not with │ │ parenthesis but with brackets (Sin[x], Log[2, │ │ 100], ...). │ │ │ │ Just like identifiers they are case insensitive │ │ so it doesn't matter how you write them: log[x] = │ │ LOG[x] = lOG[x] │ │ │ │ For the sake of beauty, some of the functions are │ │ rendered specially (explained in the Notational │ │ Functions section). Also in the reference you can │ │ find a full explanation of the functions. │ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼───────────────────────────────────────────────────┤ Name Assignment │ You can assign names to calculations for further │ │ use. These names are constants and you have to │ │ use the assignment grammar to register them. Name │ │ = Value. So something like: Earth's Volume = 3/4 │ │ * pi * Earth's Radius^3. │ └───────────────────────────────────────────────────┘ ┌────────┐ │ help │───┐ └────────┘ │ │ ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐ │ ┌──────────────────────────────────────────┐ Control Commands └──▶│ Shows you the link to the documentations │ └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘ └──────────────────────────────────────────┘ ┌─────────────────────────────┐ ┌────▶│ Exists from the application │ ┌────────┐ │ └─────────────────────────────┘ │ exit │────┘ ┌──────────────────────────────┐ └────────┘ ┌─────▶│ Clears the calculator screen │ │ └──────────────────────────────┘ │ ┌─────────┐ │ │ clear │─────┘ └─────────┘ ┌─────────────────────────────┐ │ Binary Operators │ ┌ ─ ─ ─ ─ ─ ┼────────────────┬────────────┴────────┐ │ │ │ │ 1 + 2 │ In[1]: 1 + 2 │ Summation │ │ │ │ ├ ─ ─ ─ ─ ─ ┼────────────────┼─────────────────────┤ │ │ │ │ 1 - 2 │ In[2]: 1 - 2 │ Subtraction │ │ │ │ ├ ─ ─ ─ ─ ─ ┼────────────────┼─────────────────────┤ │ │ │ │ 1 * 2 │ In[3]: 1 × 2 │ Multiplication │ │ │ │ ├ ─ ─ ─ ─ ─ ┼────────────────┼─────────────────────┤ │ 1 │ │ │ 1 / 2 │ In[4]: ─── │ Division │ │ 2 │ │ ├ ─ ─ ─ ─ ─ ┼────────────────┼─────────────────────┤ │ 2 │ │ │ 1 ^ 2 │ In[5]: 1 │ Power │ │ │ │ ├ ─ ─ ─ ─ ─ ┼────────────────┼─────────────────────┤ │ │ │ │ 1 % 2 │ In[6]: 1 % 2 │ Modulo │ │ │ │ ├ ─ ─ ─ ─ ─ ┼────────────────┼─────────────────────┤ │ │ │ │ Returns 1 if │ 1 ? 2 │ In[7]: 1 = 2 │ Equals │ ●───┤ equals and 0 │ │ │ │ otherwise ├ ─ ─ ─ ─ ─ ┼────────────────┼─────────────────────┤ │ │ │ │ Returns if 1 │ 1 ! 2 │ In[8]: 1 ≠ 2 │ Not Equals │ ●───┤ not equals and │ │ │ │ 0 otherwise └ ─ ─ ─ ─ ─ ┴────────────────┴─────────────────────┘ ▲ ▲ ▲ │ │ │ ┌────────┘ │ ┌─────┘ │ └───────┐ │ └── What to write │ │ │ └── What it does │ How it'll look ──┘ ┌───────────────────────┐ │ Notational Functions │ ┌──────────────────┬────────────────┬─────────┴──────┬────────────────┤ │ sqrt[1/2] │ abs[1/2] │ floor[1/2] │ ceil[1/2] │ ├──────────────────┼────────────────┼────────────────┼────────────────┤ │ _____ │ │ │ │ │ ╱ 1 │ ⎢ 1 ⎥ │ ⎜ 1 ⎟ │ ⎡ 1 ⎤ │ │ In[1]: ╱ ─── │ In[2]: ⎢ ─── ⎥ │ In[3]: ⎜ ─── ⎟ │ In[4]: ⎢ ─── ⎟ │ │ ╲╱ 2 │ ⎢ 2 ⎥ │ ⎣ 2 ⎦ │ ⎢ 2 ⎥ │ │ │ │ │ │ └──────────────────┼────────────────┼────────────────┼────────────────┤ │ │ │ │ Square Root ● Absolute ● Floor ● Ceiling ● • In[1]: 5 • 8 • ┌─────┬─────┐ Out[1]: │ 5.0 │ 8.0 │ └─────┴─────┘ ┌──────────────────────────────────┐ In[2]: 10 │ Out[] function makes it possible │ │ to access the history of your │ Out[2]: 10.0 │ calculations. To get output no. │ │ "x", you can can simply use: │ │ out[x] and access it │ ┌ ┐ ┌ ┐ └────────────────┬─────────────────┼───▶ In[3]: Out │ 1 │ + Out │ 2 │ │ The Special │ └ ┘ └ ┘ │ Out[] Function │ └─────────────────┘ Out[3]: 15.0 ────┐ │ │ ● │ Log[x] ──┼── Logarithm of x of base e │ │ │ Log[b, x] ──┼── Logarithm of x of base b │ │ │ Sin[x] ──┼── Sine of x │ │ │ Cos[x] ──┼── Cosine of x │ │ │ Tan[x] ──┼── Tangent of x │ │ │ Cot[x] ──┼── Cotangent of x │ │ │ Sec[x] ──┼── Secant of x │ │ │ Csc[x] ──┼── Cosecant of x │ │ │ Asin[x] ──┼── Area Sine of x │ │ │ Acos[x] ──┼── Area Cosine of x │ │ │ Atan[x] ──┼── Area Tangent of x │ │ │ Sinh[x] ──┼── Hyperbolic Sine of x │ │ │ Cosh[x] ──┼── Hyperbolic Cosine of x ├──── Functions │ │ Tanh[x] ──┼── Hyperbolic Tangent of x │ │ │ Coth[x] ──┼── Hyperbolic Cotangent of x │ │ │ Sech[x] ──┼── Hyperbolic Secant of x │ │ │ Csch[x] ──┼── Hyperbolic Cosecant of x │ │ │ Asinh[x] ──┼── Hyperbolic Area Sine of x │ │ │ Acosh[x] ──┼── Hyperbolic Area Cosine of x │ │ │ Atanh[x] ──┼── Hyperbolic Area Tangent of x │ │ │ Max[a, ..., b] ──┼── Maximum of the argument │ │ │ Min[a, ..., b] ──┼── Minimum of the argument │ │ │ Sum[a, ..., b] ──┼── Arguments sum │ │ │ Exp[x] ──┼── Natural exponent to the power of x │ │ │ Root[n, x] ──┼── "n"th root of x │ │ │ │ │ ● │ ────┘ ┌────────────────────────────────┐ ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┤ Identifiers with Reserved │ ___ │ Notation │ │ 1 + ╲╱ 5 ├─────────────────────────┬──────┘ In[1]: ⟨φ⟩ ≡ ─────────── │ For a more beautiful │ │ 2 │ rendering, Nota │ │ reserves some │ │ Out[1]: 1.618033988749895 │ identifiers to be used │ │ for rendering famous │ │ │ characters out of a │ In[2]: φ │ normal keyboard. Expect │ │ │ for the Pi, every other │ Out[2]: 1.618033988749895 │ identifier is available │ │ │ to be declared │ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─├─────────────────────────┘ │ │ │ │ ▼ Alpha' │ Alpha │ Beta' │ Beta │ Chi' │ Chi │ Delta' │ Delta │ E ● ───────┼───────┼───────┼──────┼──────┼─────┼────────┼───────┼──── │ Α │ α │ Β │ β │ Χ │ χ │ Δ │ δ │ e │ │ │ Epsilon' │ Epsilon │ Eta' │ Eta │ Gamma' │ Gamma │ Iota' │ Iota │ ─────────┼─────────┼──────┼─────┼────────┼───────┼───────┼─────── │ Ε │ ε │ Η │ η │ Γ │ γ │ Ι │ ι │ │ │ Kappa' │ Kappa │ Lambda' │ Lambda │ Mu' │ Mu │ Nu' │ Nu │ Omega' │ ───────┼───────┼─────────┼────────┼─────┼────┼─────┼────┼───────── │ Κ │ κ │ Λ │ λ │ Μ │ μ │ Ν │ ν │ Ω Mapping │ │ │ Omega │ Omicron' │ Omicron │ Phi' │ Phi │ Pi' │ Pi │ Psi' │ Psi │ ──────┼──────────┼─────────┼──────┼─────┼─────┼────┼──────┼────── │ ω │ Ο │ ο │ Φ │ φ │ Π │ π │ Ψ │ ψ │ │ │ Rho' │ Rho │ Sigma' │ Sigma │ Tau' │ Tau │ Theta' │ Theta │ ─────┼─────┼────────┼───────┼──────┼─────┼────────┼──────── │ Ρ │ ρ │ Σ │ σ │ Τ │ τ │ Θ │ θ │ │ │ Upsilon' │ Upsilon │ Xi' │ Xi │ Zeta' │ Zeta ● ─────────┼─────────┼─────┼────┼───────┼─────── Υ │ υ │ Ξ │ ξ │ Ζ │ ζ The idea to have lowercase and uppercase characters also exists for the latin characters. All the single character latin inputs will be inputed lowercase and if you add an apostrophe to their end, they become uppercase: ┌───┐ ┌───┐ ┌───┐ ┌───┐ │ a │───▶│ a │ │ a'│───▶│ A │ └───┘ └───┘ └───┘ └───┘ ──────────────────────────────────────────────────────────────────────────────── Copyright 2018-present by Pouya Kary. All Rights Reserved. This website is made using The Kary Framework and Monodraw by Helftone